Total outer-connected domination in trees
نویسنده
چکیده
Let G = (V, E) be a graph. Set D ⊆ V (G) is a total outerconnected dominating set of G if D is a total dominating set in G and G[V (G)−D] is connected. The total outer-connected domination number of G, denoted by γtc(G), is the smallest cardinality of a total outer-connected dominating set of G. We show that if T is a tree of order n, then γtc(T ) ≥ d 2n 3 e. Moreover, we constructively characterize the family of extremal trees T of order n achieving this lower bound.
منابع مشابه
A note on the total outer-connected domination number of a tree
Let G = (V,E) be a graph. A set D ⊆ V is a total outer-connected dominating set of G if D is dominating and G[V −D] is connected. The total outer-connected domination number of G, denoted γtc(G), is the smallest cardinality of a total outer-connected dominating set of G. It is known that if T is a tree of order n ≥ 2, then γtc(T ) ≥ 2n 3 . We will provide a constructive characterization for tre...
متن کاملOn trees with equal Roman domination and outer-independent Roman domination numbers
A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...
متن کاملOuter independent Roman domination number of trees
A Roman dominating function (RDF) on a graph G=(V,E) is a function f : V → {0, 1, 2} such that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. An RDF f is calledan outer independent Roman dominating function (OIRDF) if the set ofvertices assigned a 0 under f is an independent set. The weight of anOIRDF is the sum of its function values over ...
متن کاملOn Trees with Equal Total Domination and 2-outer-independent Domination Numbers
For a graph G = (V,E), a subset D ⊆ V (G) is a total dominating set if every vertex of G has a neighbor in D. The total domination number of G is the minimum cardinality of a total dominating set of G. A subset D ⊆ V (G) is a 2-dominating set of G if every vertex of V (G) \ D has at least two neighbors in D, while it is a 2-outer-independent dominating set of G if additionally the set V (G) \ D...
متن کاملOn Hop Roman Domination in Trees
Let $G=(V,E)$ be a graph. A subset $Ssubset V$ is a hop dominating setif every vertex outside $S$ is at distance two from a vertex of$S$. A hop dominating set $S$ which induces a connected subgraph is called a connected hop dominating set of $G$. Theconnected hop domination number of $G$, $ gamma_{ch}(G)$, is the minimum cardinality of a connected hopdominating set of $G$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 30 شماره
صفحات -
تاریخ انتشار 2010